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SYNOPSIS 

A new analysis technique has been developed in this paper to evaluate the upper limit of 
the packing fraction, qn , utilized in the prediction of suspension viscosities. The semiem- 
pirical equation developed for the upper limit of the packing fraction, qn, was generated 
initially from McGeary's binary particle packing fraction data. All possible D,/ D, ratios 
of particles size averages were evaluated and analyzed in this formulation development. 
Only the D 5 / D 1  and D 4 / D z  ratios of particle diameter averages were found to accurately 
predict the proper particle volume fraction location obtained in McGeary's data for the 
correct upper limit packing fraction qn. After developing methodology to calculate qn, for 
binary particle distributions, an extension was made to include distributions with any 
number n of different particle size diameters. One of the more general of the suspended 
particle viscosity equations, as developed in a previous paper by this author, was used to 
demonstrate the application of this new (P,, methodology to the evaluation of suspension 
viscosity properties. The blended binary suspension viscosity results of Johnson and Kelsey 
for near monodisperse latexes were shown to be satisfactorily predicted as a function of 
the binary volume composition. 0 1993 John Wiley & Sons, Inc. 

INTRODUCTION 

Over the years many equations have been developed 
to predict a relationship between suspension vis- 
cosity and the volume fraction of suspended par- 
ticles, cp. The applications and needs for such equa- 
tions cross many disciplines. For example, the need 
to understand the viscosity of spherical particle sus- 
pensions was recognized early in the development 
of latexes to make synthetic Paint and 
coatings latex development 5,6 has also found a need 
for this technology. Other diverse suspensions that 
have utilized this technology have included the food 
industry to evaluate milk7 as well as the coal in- 
dustry to evaluate bitumen emulsions.' More re- 
cently, this technology has also been applied to filled 
 thermoplastic^.^,^^ However, the new emerging 
thermoplastic particulate filled thermoset resins of 
the type recently described by Recker et al." would 
probably be described as one of the types of materials 
currently most in need of a better understanding of 
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the relationship between particle size distribution 
and viscosity. 

An extensive survey of the viscosity-concentra- 
tion literature was made by Rutgers in 1962.'2*13 He 
identified 96 equations from the literature which 
described the behavior of these viscosity-concentra- 
tion systems. Comparing the experimental data with 
the equations, he concluded that these 96 equations 
could be reduced to five useful ones. In each of these 
primary equations a maximum particle packing 
fraction (0, is required. Several attempts have been 
made in the literature 14-16 to predict the correct value 
€or cp, based on particle size distribution. A new ap- 
proach to analyze and calculate (0, will be described 
and introduced in this paper. 

APPLICATION OF MAXIMUM PACKING 
FRACTION cp, T O  A SPECIFIC 
GENERALIZED SUSPENSION 
VISCOSITY EQUATION 

In an earlier paper,17 this author showed that the 
primary equations identified by Rutgers l 2 3 l 3  could 

37 
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be reduced to the following generalized viscosity- 
concentration equation. 

f o r a #  1 (1) 

For the case where u = 1, the resulting equation can 
be written as 

where q = suspension viscosity, qo = viscosity of 
suspending medium, [ q ]  = intrinsic viscosity, u = 

particle interaction coefficient, k = “crowding fac- 
tor,” cp = suspension particle volume fraction, and 
cpn = maximum particle packing fraction. 

The intrinsic viscosity [ q]  is obtained at low con- 
centration levels for the following limiting slope: 

as cp + 0, 
d In q 

then - + [TI  
dcp 

for all u 2 0 ( 4 )  

Some optional equations that can be developed 
using this generalized suspension viscosity equation 
are summarized in Table I along with authors that 

first referenced some of these equations. As the par- 
ticle interaction coefficient u increases in Table I, 
the equations represented have been shown to have 
a significantly faster rate of viscosity increase as a 
function of particle volume fraction. More impor- 
tantly, the results in Table I show that fractional 
values of u are also perfectly acceptable. For ex- 
ample, if the data appear to fit an equation some- 
where between the Krieger-Dougherty equation ( u  
= 1) and the Mooney equation (u = 2 ) ,  then trial 
and error using the generalized suspension viscosity 
equation (1) can most probably be used to find a 
value of u between 1 and 2 that will better fit the 
data. Likewise, it should be noted that all of these 
equations, with the exception of the case for u = 0, 
require the utilization of a maximum particle pack- 
ing fraction c p n .  

ANALYSIS OF MCGEARY’S PARTICLE 
PACKING DATA 

Probably the most definitive work on binary packing 
of particles was done by McGeary.14 His data is 
plotted in Figure 1 for five sets of binary mixtures 
with different ratios R of the large particle diameter 
to the small particle diameter. Several  author^'^^'^ 
have attempted to analytically describe approaches 
to calculate the results described in Figure 1. Most 

Table I 
Particle Interaction Coefficient u 

Generalized Suspension Viscosity Equation for Selected Values of the 

Particle 
Interaction Simplified Form of 

Coefficient u Generalized Equation 
Previous Reference for 
Equation Derivation 

Krieger and Dougherty ( 1959)4 
ln(v/v 0 1 - - (-;I) - 1 4 1  - kcp) 

1 



MAXIMUM PACKING FRACTION AND VISCOSITY 39 

- 

..... _".. 

+ \ 
..... - ..... 

R-4.769 

R-6.526 

* R-11.27 
---t R-1653 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Volume Fraction of Small Particles, Fs 

Figure 1 
to small diameter particles (data of McGeary I' ) . 

Selected binary particle packing fraction data sets for different ratios of large 

of these approaches have attempted to describe the 
composition curve for each binary diameter ratio R ,  
using three sets of equations for each curve. This 
procedure is often impractical and at the very least 
unnecessarily cumbersome. 

After McGeary completed several binary packing 
evaluations similar to those shown in Figure 1, he 
established a maximum packing fraction cpnmax for 
each of these binary curves. This set of maximum 
packing fractions established by McGeary has been 
summarized in Figure 2 as a function of R the ratio 
of large particle diameter to small particle diameter. 

Several attempts were evaluated by this author 
to describe McGeary's data with an empirical ana- 
lytical expression. The most successful expression 
developed to fit McGeary's data, as illustrated in 
Figure 2, had the following form: 

( 5 )  4 - R )  
Vnmax = vnult - (vnutt - cpm)e 

where R = ratio of large particle diameter to the 
small particle diameter, qm = monodisperse particle 
size packing fraction where R = 1, cpnmar = maximum 
particle size packing fraction for a given R ratio, 
cpnult = ultimate particle packing fraction as R + 

00 ,  and cy = const. The two significant limits for eq. 
( 5 )  are 

when R = 1, then qnmax = cp, ( 6 )  

and 

For the data generated by McGeary, l4 the maximum 
dense random packing fraction for a monodisperse 
particle size distribution where R = 1 was found to 
be cp, = 0.625. The largest cpnmax value evaluated by 
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Figure 2 
tion data with calculated results from empirical equation. 

Comparison of McGeary’~’~ corrected and uncorrected maximum packing frac- 

McGeary for R = 78 gave a maximum packing frac- 
tion of p,,,, = 0.838. Using eq. (5) ,  this largest R 
value was found to be approximately considered in- 
finite for all practical applications from which it was 
established that the ultimate packing fraction could 
be satisfactorily estimated to be p,,lt = 0.838. Using 
these limiting packing fractions, the minimum error 
in fitting all of McGeary’s data resulted when a = 
0.247. The fit of McGeary’s data in Figure 2 using 
eq. (5)  with these constants was found to be more 
than adequate, yielding an average error of only 
0.751%. 

However, Lee l5 points out that monodisperse 
packing fractions obtained by five different sets of 
authors differed slightly from those obtained by 
McGeary.14 These authors evaluated monodisperse 
packing of solid uniform spheres for both dense ran- 
dom packing and loose random packing. An average 
value of 0.639 was calculated for dense random 
packing by Lee for these five sets of authors. Sim- 
ilarly, for these same authors an average value of 
0.589 was obtained by Lee for loose random packing. 

Lee further points out that the McGeary’s data 

can easily be corrected for the preferred dense ran- 
dom packing by multiplying each datum point by 
the ratio (0.639/0.625). Similarly, the values for pm 
and pnult in eq. (5)  can easily be corrected by mul- 
tiplying by this ratio. With this correction these val- 
ues become qm = 0.639 and pnult = 0.857. Note, how- 
ever, that when fitting McGeary’s data using eq. (5 ) ,  
a remains the same and the average % error in fitting 
the data also remains the same since both the data 
and eq. (5)  were modified using the same correction 
factor. McGeary’s corrected data and calculated 
values using a corrected eq. (5) have also been in- 
cluded in Figure 2. 

THEORETICAL DEVELOPMENT OF THE 
ULTIMATE PACKING FRACTION vnult 

At this point it is useful to establish a general re- 
lationship for the ultimate packing fraction pnult. 

For the simple case for a combination of monodis- 
perse particles, then 

Vlult = P m  (8) 
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For the case of two particles of different size then 
the maximum packing fraction for this combination 
of particles would be given as: 

For this case the improvement in packing fraction 
for the second particle must be added from the empty 
space left by the first particle or ( 1 - cplult). The 
maximum space that the second particle size can 
occupy of this empty space is then equal to cp,. 

It is convenient to rewrite eq. (9)  in the following 
form: 

Substituting eq. (8) into ( 10) gives 

Similarly, for a combination of three particle 
sizes, then, the maximum packing fraction can be 
written as 

With appropriate substitutions this equation reduces 
to the following: 

In general, it can be shown that for n different 
particle sizes the maximum packing fraction can be 
written as 

Simplification of eq. ( 14) can be accomplished by 
noting that the sum 

Sn = 1 + (1 - cp,) + (1 - (P,)~ + (1 - (P,)~ 

+. - .+ (1 - cp,,Jn-' (15) 

can be multiplied by (1 - cp,) to give 

Subtracting eq. (16) from (15) and simplifying gives 

Substituting eq. (17) into (14) yields the following 
simplified value for the ultimate packing fraction 
cpnult for any number of particle sizes, n, in a batch 
combination 

The value of cpnult has been calculated in the follow- 
ing table for two different monodisperse packing 
fractions identified by Lee l5 in a summary of values 
from the literature for dense random packing and 
loose random packing (see Table 11). 

As indicated earlier in this paper, an ultimate 
packing fraction of cpnult = 0.857 was required to fit 
McGeary7sl4 data for binary combinations of particle 
sizes. Note that this binary ultimate packing frac- 
tion, cpnult, is between the limits for loose random 
packing and dense random packing as indicated in 
the above table. However, when fitting McGeary's 
data, the monodisperse dense packing fraction pm 
= 0.639 was also required. It is apparent that neither 
pure dense random packing nor loose random pack- 
ing would give the values utilized in fitting Mc- 
Geary's data. 

However, if the derived expression for ultimate 
packing fraction, eq. ( la) ,  is rewritten in pseud ratio 

Table I1 pnult Results for Several Different Combinations of Particle Sizes 

Number of Particle (Pnuit (9, = 0-639) (Pnult ((Pm = 0.589) 
Sizes in Mixture Dense Random Packing Loose Random Packing 

1 0.639 0.589 
2 0.870 0.831 
3 0.953 0.931 
4 0.983 0.972 
5 0.994 0.988 
6 0.998 0.995 

100 1.000 1.000 
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form and if (c, is allowed to be an adjustable param- 
eter, then the expected results for n = 1 and n = 2 
can be obtained with the arbitrary packing fraction 
(P, = 0.659 using the following expression: 

The expected tpnult results for monodisperse, binary, 
and other values of n using this equation have been 
included in Table 111. 

Ultimate packing fractions calculated from eq. 
( 19) range from monodisperse dense random pack- 
ing to loose random packing fraction with as few as 
three particle sizes in the mixture. For more than 
three particle sizes the ultimate packing fractions 
predicted are less than either dense random packing 
or loose random packing. Ultimate Packing fractions 
with values less than loose random packing are un- 
reasonable. It is apparent that eq. ( 19) is only useful 
to show that ultimate packing fractions should be 
calculated from eq. ( 18) with pm = 0.589 for mixtures 
of three or more particle sizes. 

Another result of this simplified analysis relates 
to McGeary'~'~ maximum values for binary ultimate 
packing fractions as a function of R ,  the ratio of 
large particle size diameter to small particle size di- 
ameter. Since the maximum packing fractions for 
binary mixtures begin with monodisperse dense 
packing and steadily and uniformly approach values 
closer to loose random packing with an increase in 
R ,  this is an indication that packing is apparently 
more difficult as the size difference between particle 
sizes increases. This may give a better understanding 
as to why ultimate packing fractions approach the 
loose random packing limit for mixtures with three 
or more particles. 

Table I11 qnuIt Results for Several Different 
Combinations of Particle Sizes 

DIFFERENT PARTICLE SIZE AVERAGES 
AND THEIR RATIOS IN EVALUATING 
PARTICLE SIZE DISTRIBUTION 

It has long been suspected that a relationship existed 
between the large to small particle diameter ratio R 
in a binary mixture of particles and certain ratios 
of particle diameter averages. This relationship will 
be explored in some depth. 

In general, most particle diameter averages, D,, 
can be described in the following general form: 

i-  1 I i - 1  

where D, = average particle size diameter, %)i = di- 
ameter of particle size i, and Ni = number of i par- 
ticles. For a binary mixture of particles of two dif- 
ferent diameters, then, the ratio of a D, average di- 
ameter and a Dy average diameter could be written 
as 

As described earlier, for a binary mixture the ratio 
R of the large diameter particle D2 to the small di- 
ameter particle al is defined as 

The volume fraction of the small particle, f ', in the 
mixture can be described as 

This definition also can be written as 

Number of Particle ( ~ n u ~ t  ( ~ p m  = 0.659) 
Sizes in Mixture Using Eq. (19) 

A ratio off to f using eq. ( 23 ) can be written as 

1 
2 
3 
4 
5 
6 

100 

0.639 
0,857 
0.931 
0.956 
0.965 
0.968 
0.970 

Substituting eqs. (22)  and (24)  into eq. (25)  gives 

$=(+)(A) 



MAXIMUM PACKING FRACTION AND VISCOSITY 43 

Substituting eqs. (22)  and (26)  into eq. (21)  gives 
the D,/Dy ratio as 

where 

For example, if x = 5 and y = 1, then a plot of eq. 
(27) for Dx/Dy or D5/D1 is shown in Figure 3 as a 

function of the small particle volume fraction f, 
(where f ,  = f l  = 1 - f 2 ) .  Note that the position of 
the maximum relative to R in Figure 3 is nearly 
identical to that for the data of McGeary14 in Fig- 
ure 1. 

The extrema illustrated in Figure 3 for eq. (27 )  
can be obtained by taking its derivative and setting 
it equal to zero as 

This derivative yields the following formulation to 
obtain roots for these extrema: 

( a  + b ) f i  + (2c)fz - c = 0 (30) 

6.0 

5.5 - 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Volume Fraction of Small Particles, Fs 
0 

Figure 3 
for different ratios of large to small particles, R .  

Binary particle size distribution ratio D s / D 1  as a function of composition, f s ,  
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The two roots of this equation are 

1 
f z  = 1 + i F  

and 

Only one of these roots, eq. (31 ) , gives values of f z  
between 0 and 1. When this root is substituted into 
eq. ( 2 7 ) ,  the maximum value of Dx/Dy  is given as 

This equation can also be rewritten as 

Note from eq. (33) that 

5 R for all x 2 1 andy 2 1 (34) Mmax 
In addition, the maximum DJD,  for each R value 
is dependent only on the difference between x and 
y and not the magnitude of x or y .  For example, the 
following groups of x and y give the same maximum 
ratio of D,/Dy as a function of R :  

3 2  1 
4 3  1 
5 4  1 
3 1  2 
4 2  2 
5 3  2 
6 4  2 
4 1  3 
5 2  3 
6 3  3 

An example of one of these groups of x and y which 
define identical maxima for all values of R would 
include 

(2) =($) =($) =(%) (35) 
max max max max 

To get a better indication of how close the value of 
( Dx/Dy)max approaches R as function of x andy con- 
sider the plot of (Dx/D,) , , /R described by eq. (33') 
as illustrated in Figures 4 and 5. It is apparent in 
these figures that as the difference between x and y 
increases that the value of (D,/D,) , /R approaches 
1 much more quickly with smaller values of the di- 
ameter ratio, R ,  in a binary particle distribution. 

Earlier it was pointed out that the position of the 
maximum ratio for DJD,  or D5/D1  (where x = 5 
and y = 1 ) in Figure 3 is nearly identical to location 
of the maxima relative to f, for the data of McGeary14 
in Figure 1. The question then arises as to whether 
another combination of x and y relative to the ratio 
of DJD,  would give a better prediction of the max- 
ima observed by McGeary. 

The large particle volume fraction f z  associated 
with maximum ratio of DJDY for each combination 
of x and y has already been shown mathematically 
to be defined by eq. ( 31 ) . As illustrated in Figure 6, 
calculations with this equation have been generated 
at  various values of x and y to establish the small 
particle volume fractions fs (where fs  = f l  = 1 - f 2 )  

associated with ( D J D , ) ,  as a function of the ratio 
of the large particle diameter to the small particle 
diameter, R .  It is interesting to note in this figure 
that 

a t  R = 1 fs = 0.5 

for all values of x 2 1 and y 2 1 (36) 

This result is intuitively satisfying since it predicts 
that the maximum ratio for D,/D,  would occur at 
a condition of equal volume when both particles are 
the same size. 

Equation (31) is also similar to eq. (33) in that 
groups of x and y can give the same particle volume 
fraction, f,, location of ( DX/DJmax.  Groups of x and 
y that have the same value of ( x  + y - 7 )  also have 
the same maxima location. Some examples of these 
groups would include: 

- x - Y ( x + y - 7 )  
2 1  -4 
3 1  -3 
2 2  -3 
4 1  -2 
3 2  -2 
5 1  -1 
4 2  -1 
6 1  0 
5 2  0 
4 3  0 
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Based on this relationship between x and y ,  it is 
apparent in Figure 6 that values of fs 2 0.5 will be 
obtained for all groups of x and y that give ( x  + y 
- 7 )  2 0. Since all the McGeary14 maxima were 
obtained for fs  < 0.5, it is apparent the groups of x 
and y that give ( x  + y - 7)  2 0 cannot be used to 
give realistic predictions of the maximum packing 
fractions. 

The results in Figure 6 also show that x and y 
combinations that give (n + y - 7 )  I -2 also predict 
values for fs < 0.2 for R > 4. These combinations 
are also inconsistent with McGeary’s data in Figure 
3. This result appears to leave only two combinations 
(x = 5, y = 1) and ( x  = 4, y = 2)  that accurately 
predict the location of McGeary’s maxima. 

It has already been shown that 

However, as shown in Figure 4, the relationship be- 

different. As the ratio of the large to small diameter, 
R ,  increases, it is apparent in this figure that ( D5/  
Dl)max approaches the value of R much more quickly 
than (D3/Dl)max. For this reason the (D5/Dl)max 
ratio would appear to be preferred as a measure of 
R to predict McGeary’s binary results, even though 
both (D5 /Dl )max  and (D4 /D2)max  achieve their 
maximum values at  the same particle composition. 

One average particle size diameter not included 
in the D, averages described by eq. (38)  is the so- 
called “turbidity” average D,, defined as 

I i = l  I i= l  

The relationship between the turbidity average D, 
and the D5 average is indicated in Figure 7 for several 
widely different particle size distributions. It is ap- 
parent that these two averages can give nearly iden- 

tween ( D3/D1)max and ( D5/D1)max is significantly tical results in many cases. 

0.754 r I D3D1 / 

0.40 

0.35 

0.30 DZR)I 

0.25 

0.20 I .  *. . I .  .. . ,- - .. I . .  .. I . .  . . I .  . - - r n - l l - - - T n Y . ~ % .  . , . .n 

Ratio of Large to Small Diameter Particles, R 

Figure 4 
particles, R ,  for selected D,/ Dy ratios. 

Ratio of ( D z / D y ) J R  as a function of the ratio of large to small diameter 
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Figure 5 
particles, R ,  for higher level DJD, ratios. 

Ratio of ( D J D y ) m a x / R  as a function of the ratio of large to small diameter 

The question then arises as to whether the ratio 
of D J D ,  is possibly better than the D5/D1 ratio in 
predicting the location of McGeary's maxima. Using 
eqs. ( 2 2 )  - ( 2 6 )  previously utilized to analyze D,/ 
Dy,  the ratio of DJD1 can be developed as 

] ( 3 9 )  
R3 + f2(1  - R 3 )  
R3 + f 2 ( R  - R 3 )  

Again the extrema of this equation can be found by 
taking this derivative as 

The resulting equation from which the roots can be 
determined is 

where 

a = R 9  + R7 - 2R6 + 2R4 + R3 - R 

b = -2R9 - 2R7 + 6 R 6  + 2R4 - 4 R 3  

c = R 9  - R6 - 3R4 + 3 R 3  ( 4 2 )  

leading to the following roots 

( 4 3 )  
-b k Vb2 - 4 a ~  

2a f 2  = 
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One maximum “turbidity average” ratio, Dt/Dl ,  root 
(with values between 0 and 1 ) is plotted in Figure 
8. It is apparent that for small particle volume frac- 
tions f s (  = 1 - f 2 ) ,  this DJD1 root gives values closer 
to 0 5 / 0 1  fractions when R is less than 5 but ap- 
proaches D4/D1 fractions at  larger values of R.  
These calculations indicate that the D,/D1 ratio does 
not predict the results obtained by McGeary as well 
as the D5/D1 ratio. 

Also included in Figure 8 are results calculated 
for a special DJD,  ratio where x = 5.5 and y = 1. 
Of particular interest is the predicted small particle 
fraction fs  for the largest binary particle diameter 
ratio, R = 78, evaluated by McGeary.14 At R = 78 
the small particle volume fraction f s ,  calculated for 
the D5.5/01 ratio, was found to be fs  = 0.25. McGeary 
obtained an fs  value near 0.25 for a particle diameter 
ratio of R = 78. However, for R values below 30 for 

the D5.5/01 ratio, the small particle fractions are 
much larger than McGeary’s results. Again, the 0 5 . 5  / 
D1 ratio does not predict the full range of data ob- 
tained by McGeary as well as the D5/D1 ratio. 

In passing, it is apparent in Figure 8 that the D5/ 
D1 ratio yields an fs value near 0.10 at  the largest R 
ratio, R = 78, evaluated by McGeary. Although this 
value is slightly lower than McGeary obtained, the 
predicted fs  values a t  lower values of R were very 
close to those obtained by McGeary. This is partic- 
ularly important since most practical combinations 
of particles in latexes, etc. would seldom be expected 
to exceed R = 15. For R values in this lower range, 
the 0 5 / 0 1  ratio predicts McGeary’s results remark- 
ably well. It is also possible that if McGeary’s results 
were duplicated for the R values near 78 that the 
reevaluated small particle fractions fs  at these max- 
imum packing fractions would in fact be closer 
to 0.10. 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 

Ratio of Large to Small Diameter Particle, R 

Figure 6 
the ratio of large to small diameter particles, R ,  for selected DJD,  ratios. 

Derived optimum volume fraction small diameter particles, f s ,  as a function of 
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Figure 7 
number of particle size distributions. 

Calculated values for the D, and DS particle diameter averages for a large 

MCGEARY'S MAXIMUM BINARY PACKING 
FRACTIONS CALCULATED WITH (D5/Dl)max 
OR (D4/DZ)max REPLACING R 

In an earlier section it was shown that the Mc- 
Geary's maximum packing fractions could be pre- 
dicted very satisfactorily as 

small particle size, R ,  in eq. (5) could be replaced 
by the (D5/D1),,, ratio as 

Vnmai  = Vndt  - (Vnult - V m ) e a ( l - ( D s ' D 1 ) ~ )  (44) 

where the following limits are again applicable: 

when (2) = 1, then Vnmax = V m  (45) 
max 

Vnmax = V n d t  - (Vnult - pb,)e"('-R' (5 )  

From D,/D, analysis, it has been shown that the 
maximum binary packing fraction is accurately pre- 
dicted using the D5/D1 ratio. In addition, it has been 
shown that the maximum value that can be achieved 
by this ratio is equal to R. Based on this result, it 
would appear possible that the ratio of the large to 

and 

* 00 3 then Vnmax + Vnult (46) 
as Mma* 

The maximum value of the ratio D6/D1 for any R 
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Figure 8 
the D 6 / D l ,  Ds .s /D1,  D 5 / D 1 ,  D J D 1  and D 4 / D 1  average particle diameter ratios. 

Comparison of the derived optimum volume fraction of small particles, f s ,  for 

value is then determined by substituting x = 5 and 
y = 1 into eq. (33) to yield 

in eq. (44) was only 0.467%. Similarly, when fitting 
McGeary’s data using eq. ( 44 ) with the ( D4/ D2 ),,, 
ratio replacing the (D5 /Dl )max  ratio, then the con- 
stant CY obtained was ] (47) 

2R-5/2  + RP5 + 1 (3max = R1 2R-3/2  + R-3 + 1 

(Y = 0.488 (49) 

imum packing fractions (Pnmax could be predicted ef- In the average in predicting Mc- 
ficientb using (Pm = 0.639 and (Pnult = 0.857. It would 

Earlier it was shown that McGeary’s binary max- 

G ~ ~ ~ Y ~  results for this was 0.426%. 
be expected that these same packing fractions would 
be satisfactory to predict values of pnmax when fitting 
McGeary’s binary data using eq. (43 ) . McGeary’s 
data evaluated using this expression, where 

Note that the average error in predicting Mc- 
Geary’s results with either the (D5/Dl)max or (D4/ 
D2)max ratio that the error was nearly half the av- 
erage error of 0.751% obtained using eq. ( 5 ) .  It is 
appearent that either the (D5/Dl)max or ( D 4 / & ) m a x  

ratio yields a significant improvement in the pre- 
diction of the absolute value of qnmax over of using 
only R .  

CY = 0.268 (48) 

is summarized in Figure 9. The average error in pre- 
dicting McGeary’s data using the ratio (D5/D1)max 
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If f 2  is the volume fraction of the large particle size 
in a mixture of two particles, then the 0 5 / 0 1  ratio 
can be described by simplifying equations derived 
earlier in this paper as 

where 

Since the binary particle expression for 0 5 / 0 1  de- 
scribed by eq. (50) encompasses all compositions 
including the maxima values, it is suggested that 
the value of (P, for all binary compositions could be 
adequately predicted using a modified version of eq. 
(44)  as 

In addition, earlier in this paper it was shown that 
for particle size combinations of more than binary 
mixtures that the general values for pnult could be 
obtained from the following equation: 

As indicated earlier in this paper, the ultimate pack- 
ing fraction p,,lt is best predicted above n = 2 using 
the monodisperse limit for loose random packing or 
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0.65 0'70;/ 

p, = 0.589. The maximum value of 0 5 / 0 1  for any 
suspension with particles involving n different size 
diameters can be estimated using the maximum 
value of 0 5 / 0 1  for binary mixtures. As derived ear- 
lier in this paper, the calculated maximum value for 
both the 0 5 / 0 1  and D4/D2 ratios for binary mixtures 
is determined at the following composition: 

f 2  = v%/(vx + 1) ( 5 3 )  

The predicted results for pn calculated from eq. ( 52 ) 
for several different combinations of particle size 
diameters, n,  up to n = 100 have been plotted in 
Figure 10 as a function of ( D5/D1)max. These results 
would indicate that values of (D5/D1) max 2 15 would 
appear to offer only minimal improvement in the 
maximum packing fraction for any combination of 
particles. It is also apparent that combinations of 
greater than six particles appear to offer only min- 

imal improvement in the theoretical maximum 
packing fraction. 

The general expressions for D5 and D1 in calcu- 
lating the ratio 0 5 / 0 1  for n different particle sizes 
can be evaluated from the following formulations: 

Utilizing this calculation procedure, the value of pn 
can be evaluated for any ratio 0 5 / 0 1 .  Evaluation 
of these averages requires knowledge of the number 
each kind of particle, Ni, and the diameter of each 
particle, Di, or another measure of the composition 
of n particle size diameters in a suspension. 
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Figure 10 Theoretical calculated maximum packing fraction (4")- for blends of several 
different particle sizes, n, compared with McGeary's l4 binary maximum packing fractions. 
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PREDICTION OF SUSPENSION VISCOSITY 
PROPERTIES UTILIZING qn 

The influence of particle size and polydispersity on 
the viscosity of synthetic latexes has been studied 
by Johnson and K e l ~ e y . ~  By comparing loading lev- 
els of several combinations of two relatively mono- 
disperse latexes a t  the same viscosity, they found 
that a maximum in percent solids was achieved. The 
effect of blending two latexes of different particle 
sizes to give percent solids at essentially the same 
1000 cps viscosity level is shown in Figure 11. This 
figure illustrates that a minimum viscosity-maxi- 
mum solids latex system can be obtained by suitable 
adjustment in both particle size and distribution. 

The results shown in Figure 11 can be predicted 
with equations developed in this paper. This process 
will be illustrated by rewriting eq. ( 1) 'in the form 

for u P 1 (56) 

For the case where u = 1, the resulting equation can 
be written as 

In the absence of intrinsic viscosity information for 
the data of Johnson and K e l ~ e y , ~  the Einstein 
value20s21 can be assumed such that 

[?I = 5 / 2  (58) 

The viscosity of the solution can then be determined 
once (P,, is estimated from particle size distribution. 

0.68 

R = 3.42 / 
0.66 - 

0.64 - 

0.62 - 

- -_ 
0.60 1 / / R =  1.8 
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Volume Fraction of Large Particles, fL 

Figure 11 Total solids at 1000 cps as a function of the volume fraction of large particles, 
fL, for three different sets of blends of large and small diameter particle latexes (data of 
Johnson and Kelsey3). 
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Utilizing constants developed earlier in this paper 
for binary mixture of particles, the value for qn can 
be obtained from eq. (52) as 

pn = 0.857 - (0.857 - 0.639)e0.268('-(D6/D1)) (59) 

For purposes of this discussion, the density of both 
particles and solvents in this analysis will all be as- 
sumed to be identical to minimize calculations in 
converting from weight to volume. If f 2  is the volume 
fraction of the large particle size in a mixture of two 
particles, then the Db/D1 ratio can be described by 
simplifying eqs. (50) and ( 51 ) derived earlier. 

If two suspensions are compared at  the same vis- 
cosity but at  different volume fractions, f 2 ,  they will 
have a constant viscosity ratio ( v / q 0 ) .  Equation (56) 
can then be solved for the general solution for the 
volume concentration cp in terms of this constant 
viscosity ratio ( q / f 0 )  as 

f o r u #  1 (60) 

When u is an odd integer, a second possible solution 
is 

f o r u Z 1  (61) 

For the case where u = 1, the resulting equation can 
be written as 

(621 

0 Data of Kelscy and Johnson 

. ' . . r . ' . . I . . . ' I . . - . , . - - . I  - - . .  I . . .  ' , . . ' . 1 " . . 1 " . .  
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Volume Fraction of Large Particles, FL 

Figure 12 
calculated constant viscosity results at three levels of the particle interaction coefficient. 

Johnson and Kelsey's3 data set where R = 3.42 compared with theoretically 
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For comparison, Figure 12 shows the predicted 
total solids volume fraction (o, calculated using val- 
ues of u from 1 to 3 for one set of binary data ( R  
= 3.42) developed by Johnson and Kelsey. In the 
absence of comparative viscosity measurements, a 
constant viscosity ratio 17/70 was calculated from an 
estimated total solids intercept condition ( c p  
= 0.595) , where the volume fraction of large parti- 
cles was zero. A particle interaction coefficient of u 
= 3 appeared to give the best fit of the total solids 
data. 

Predicted total solids results, using a particle in- 
teraction coefficient of u = 3, are compared in Figure 
13 for all three binary data sets measured by Johnson 
and Kelsey. The initial constant viscosity ratio q /  
qo for each set of data was calculated at a volume 
fraction of large particles, f~ = 0.75. These results 
show that the location of the maximum is nearly 
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0 rn - 0.62 
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0.60 

0.58 

identical to maximum obtained from the measure- 
ments of Johnson and Kelsey. In addition, although 
the predicted values of the total solids were not as 
accurate as had been hoped, the calculated results 
were in the range of actual measurements and the 
general shapes of the curves were very similar to the 
measured results. More importantly, this figure 
shows that viscosity results can be predicted directly 
from the evaluation of particle size distribution. In 
addition, the location of the optimum particle size 
distribution to give the lowest viscosity can be cal- 
culated. 

In this instance, monodisperse particle size dis- 
tributions were assumed for both particle size latexes 
in each binary blended mixture. It is apparent that 
this accounts for the identical end points for all three 
binary latex series where the volume fraction of large 
particles, f ~ ,  are 0 and 1. Better results would prob- 

R = 3.42 
a = 3  

R = 1.8 
a=3 

I . . .  1 . . . . . . . . . . . . . . . . . . . . . . . .  l . . . . l . . . . l . . . . l . . .  
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3 

Figure 13 Theoretically calculated constant viscosity results at one level of the particle 
interaction coefficient for all three sets of binary blends developed by Johnson and Kelsey. 
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ably have been obtained if the full distribution of 
each latex were evaluated separately prior to 
blending. 

CO NCLU DI N C REMARKS 
A new analysis technique has been developed in this 
paper to evaluate the upper limit of the packing 
fraction, p,,, utilized in the prediction of suspension 
viscosities. A general viscosity equation for suspen- 
sions developed in a previous paper17 by this author 
was used to demonstrate the viscosity methodology 
developed. The derivation and formulation process 
to evaluate the upper limit of the packing fraction, 
p,,, was generated initially for binary particle size 
distributions utilizing McGeary’s l4 packing fraction 
data. Specific ratios of particles size averages were 
also found to be very important in this formulation 
development. In particular, either the D5/D1  or the 
D 4 / D 2  average particle size ratio was shown to be 
required to generate the correct value for the upper 
limit of the packing fraction, p,,, at the proper par- 
ticle volume fraction obtained in McGeary’s data. 
After developing a binary particle size methodology 
to calculate pn, an extension was made to include 
suspensions with any number n of different particle 
size diameters. 

The blended binary suspension viscosity data of 
Johnson and Kelsey3 for near monodisperse latexes 
was shown to be satisfactorily predicted as a function 
of the binary volume composition using this new 
methodology. This example showed that viscosity 
properties of binary suspension blends, like the low- 
est viscosity, can be predicted directly from an eval- 
uation of particle size distribution and composition. 

In general, the foundation for the evaluation of 
viscosities for blended multiple particles size sus- 
pensions has been described. However, a detailed 
discussion of multiple particle suspension blends 
with more than two particle size diameters in each 
suspension will be left for a future paper.22 
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